요소분해법

    시계열 요소분해법 (2)

    추세변동 1) 추세변동 시계열자료가 장기적으로 어떤 경향을 나타내고 있는가를 추세(trend)라고 하며 시계열자료가 증가나 감소의 경향이 선형(linear)인지 어떤 함수관계로 나타낼 수 있는지를 찾는 것 시계열이 장기간에 걸쳐 점진적으로 상향하거나 하향하는 변화상태를 나타내는 변동 예로 국민 총 생산량, 인구, 자동차 보유대수 등.. 경제정책의 수립이나 제품에 대한 장기저적인 수요의 추세변동을 예측하여 경영계획의 수립을 위해서 필요 2) 추세변동의 형태 선형 추세 : 선형함수 : 시간의 변화에 따라 직선으로 증가하거나 감소하는 추세 곡선 추세 - 이차 추세 함수 - 지수 추세 함수 : 일정한 성장률로 성장하는 과정을 나타내는 추세 곡선 추세 - 이차 추세 함수 - 로지스틱 추세 함수 : 성장한계를 갖고..

    시계열 요소분해법 (1)

    시계열의 요소분해법(decomposition) 평활방법은 시계열자료가 어떤 패턴에 따라 변화한다는 전제하에서 예측시점으로 부터 과거 시점의 자료들을 평균함으로싸(주로 가중평균), 시계열 변화 패턴의 부드러운 모습을 찾아보자는 것 시계열 요소분해법이란 시계열자료는 몇 가지 변동들의 혼합(결합)으로 이루어지는 것이므로, 시게열자료를 형성하고 있는 변동 요소들을 찾아내고 시계열자료를 그 요소들의 결합으로 표현한 후 장래시점에 대해 예측해 보는 것 실제로 우리가 분석하고자 하는 많은 시계열자료들은 대체로 추세(trend), 계절변동(seasonal fluctuation), 순환변동(cyclical movement)으로 이루어지며 기타 불규칙 변동(irregular/random fluctuation)이 추가되어..