Arima

    Box-Jenkins 모형 (5) - 비정상적 시계열, ARIMA모형

    비정상적 시계열 시계열의 정상화 실제로 관측되는 대부분의 시계열 자료는 정상성을 가지지 못하는 경우가 많으며, 대부분의 시계열은 비정상적 시계열이다. (1) 비정상 시계열의 대표적인 특성 시간의 흐름에 따라 시계열의 평균수준이 다르다. 시간의 흐름에 따라 시계열의 추세를 가진다. 시간의 흐름에 따라 시계열의 계절성을 보인다. 시간이 흐름에 따라 시계열의 분산이 증가하거나 감소한다. (2) 비정상성의 중요한 요인의 추세 결정적추세(deterministic trend) : 시간의 흐름에 따라 추세가 변하지 않고 일정하게 계속되는 것으로 차분을 통해서 추세를 제거하는 것보다 추세요인을 모형에 포함시켜 추세성분을 추정하고 예측에 사용 확률적추세(stochastic trend) : 인접 자료들간에 강한 양의 상관..

    Box-Jenkins 모형 (4) - 시계열의 모형구축

    모형의 파라메터 추정과 진단 시계열의 모형구축 (1) 시계열 모형구축하는 과정 모형식별단계 : 시계열의 도표를 그려 시계열의 특성을 파악하고 모형을 식별 모형추정단계 : 식별된 모형의 모수를 추정 모형진단단계 : 추정된 모형을 진단 모형설정단계 : 최종적인 모형 설정 예측단계 1) 시계열의 사전조정 : 추세의 제거, 분산안정화 변환 1. 추세성의 제거 결정적추세(deterministic trend) : 시간의 흐름에 따라 추세가 변하지 않고 일정하게 계속되는 것으로 차분을 통해서 추세를 제거하는 것보다 추세요인을 모형에 포함시켜 추세성분을 추정하고 예측에 사용 확률적추세(stochastic trend) : 인접 자료들간에 강한 양의 상관관계 때문에 어떤 추세가 있는 것처럼 보이는 경우가 있는데 이러한 추..

    Box-Jenkins 모형 (1)

    Box-Jenkins 모형 1) Box-Jenkins 모형은 시계열자료 분석의 대표적인 예측모형이다. ARIMA(Auto-Regressive Integrated Moving Average) 모형으로 일컬어지는 Box-Jenkins 방법은 주어진 시계열자료가 어떤 모형에 맞을 것인가를 판단하고 시계열자료를 그 모형에 적용시켜 나가는 방법 2) Box-Jenkins 모형에 의하여 시계열 자료를 다룰 때 다음의 세 가지 단계를 거친다. (1) 모형식별(model identification) : 현시점을 기준으로 과거 시계열자료들로 부터 얻어진 여러 가지 통계량으로써, 그 시계열 자료가 어느 모형에 적합한 가를 알아보는 단계 (2) 식별된 모형의 파라메터(모수) 추정 및 진단(testing) : 일단 어느 모형..