AR모형

    비정상적계절시계열모형(1) - 순수계절시계열

    비정상적 계절시계열모형 시계열자료는 정상적 시계열과 비정상적 시계열로 나누어 지며, 모형 식별은 정상적 시계열에 대해 적용시키는 것이기 때문에 분석하고자 하는 시계열자료가 비정상적 시계열일 경우 차분을 한다거나 함수관계로 표현한 후 차분을 하는 방법 등으로 비정상적 시계열을 정상적 시계열로 전환시켜야함 그 후에 예측의 절차(추정 - 진단 - 예측)을 밟아나가는 것 지난 번에 배웠던 ARIMA모형이란 용어는 비정상적 시계열자료에 대해서 분석을 하는 경우의 모형에 대한 것이며, 정상적 시계열에 대한 모형을 ARMA모형으로 표현하는 것과 같이 비정상적 시계열자료에 대해서 ARIMA 모형으로 표현하는 것 우리가 분석하고 하는 시계열자료은 대부분 비정상적 시계열일 뿐만 아니라 계절성을 갖고 있으므로 이러한 계절성..

    Box-Jenkins 모형 (4) - 시계열의 모형구축

    모형의 파라메터 추정과 진단 시계열의 모형구축 (1) 시계열 모형구축하는 과정 모형식별단계 : 시계열의 도표를 그려 시계열의 특성을 파악하고 모형을 식별 모형추정단계 : 식별된 모형의 모수를 추정 모형진단단계 : 추정된 모형을 진단 모형설정단계 : 최종적인 모형 설정 예측단계 1) 시계열의 사전조정 : 추세의 제거, 분산안정화 변환 1. 추세성의 제거 결정적추세(deterministic trend) : 시간의 흐름에 따라 추세가 변하지 않고 일정하게 계속되는 것으로 차분을 통해서 추세를 제거하는 것보다 추세요인을 모형에 포함시켜 추세성분을 추정하고 예측에 사용 확률적추세(stochastic trend) : 인접 자료들간에 강한 양의 상관관계 때문에 어떤 추세가 있는 것처럼 보이는 경우가 있는데 이러한 추..

    Box-Jenkins 모형 (3) - MA모형, AR모형, ARMA모형

    MA모형, AR모형, ARMA모형의 ACF와 PACF 후진연산자 이러한 후진연산자를 통해 모형을 좀 더 간결하고 효과적으로 표현한다. 또한 이러한 표현은 앞으로 계절성과 비정상적 시계열을 나타내는 데에 절대적으로 필요하며, 시계열분석에서 파라메터(모수) 값에 대한 제약조건을 나타내는데도 필요하다. MA 모형 (1) MA(1) 모형 MA(1) 모형의 ACF와 PACF 형태는 다음과 같다. (2) MA(2) 모형 * MA(2) 모형의 ACF와 PACF의 형태 -> 시차 1,2 에서만 ACF가 뚜렷하게 나타나며(spike), 그 이상들의 시차들에서는 ACF가 절단된 형태를 보일 것이다. 또한 PACF 에서는 시차자 점점 증가함에 따라 지수적으로 감소하거나, 부호를 바꿔가면서 감소, 또는 sine형태로 감소하는..

    Box-Jenkins 모형 (2) - 정상적 시계열에 대한 Box-Jenkins 모형

    정상적시계열에 대한 Box-Jenkins 모형 시계열의 자료가 정상적 시계열인 경우, Box-Jenkins 방법은 그 시계열 자료를 다음의 기본적인 세 가지 모형으의 하나라고 전제한다. 1) 자기회귀모형(AR: Auto-Regressive Model) 2) 이동평균모형(MA: Moving Average Model) 3) 자기회귀이동평균모형(ARMA: Auto-Regressive Moving Average Model) 자기회귀모형 1) 시계열의 모형에서 현시점의 상태를 과거시점의 상태들, 즉 과거의 자기자신의 관측값과 현시점의 오차의 함수로 나타낼 수 있다면 함수 f를 회귀함수라고 하고, 이 모형을 자기회귀모형(autoregressive model)이 된다. (정의) 만일 Y(t)가 임의 정수 p에 대하여..